Factors that influence the intention of using an app in higher education

Authors

DOI:

https://doi.org/10.16930/2237-766220213193

Keywords:

education technologies, UTAUT, application, education

Abstract

The technology incorporation in the academic area results in changes in the way students see the subjects professors teach, as well as interferes with interpersonal relations, contributing to expanding the classroom beyond its physical environment. Therefore, it creates interactive learning environments in which the professor assumes a mediating role. Another consequence of technology insertion in education is the emergence of virtual tools that collaborate with student growth. With the use of the Unified Theory of Acceptance and Use of Technology (UTAUT), this research aims to identify which factors influence the intention of using an application that provides tips for students about the subject discussed in class in the Undergraduate Program in Accounting of a Federal University in southern Brazil.  This is descriptive research with a quantitative approach through primary data. Version 17.0 of the Statistical Package for the Social Sciences (SPSS) was used, which analyzed the collected data to obtain a descriptive statistical analysis. Then, the database was imported into the Smart PLS statistical program (version 2.0) to empirically validate the hypotheses through Structural Equation Modeling (SEM). In view of the results achieved, the conclusion was that the performance expectancy and social influence directly and significantly affected the intention of using the application.  In addition, it is expected that this research will contribute to the academic community by supporting the inclusion of mobile technologies for the propagation of education beyond the classroom, thus enabling omnipresent education for society in general.

References

Adegbija, M. V., Bola, O. O. (2015). Perception of Undergraduate a on the adoption of mobile technologies for learning in selected Universities in Kwara State, Nigeria. Procedia Social Behavioral Sciences, 176(1), 352- 356. DOI: https://doi.org/10.1016/j.sbspro.2015.01.482

Ajzen, I. (2008). Consumer attitudes and behavior. In C. P. Haugtvedt, P. M. Herr, & F. R. Cardes. Handbook of consumer psychology. New York: Lawrence Erlbaum Associates, 525-548.

Almeida, R., & Albertin, A. (2014). Análise dos Fatores Determinantes da Adoção de Rede Social Corporativa com Aplicação do Modelo UTAUT. Revista Eletrônica Gestão e Serviços, 5(1), 994-1013. DOI: https://doi.org/10.15603/2177-7284/regs.v5n2p994-1013

Almusharraf, N., & Khahro, S. (2020). Students satisfaction with online learning experiences during the COVID-19 pandemic. International Journal of Emerging Technologies in Learning (IJET), 15(21), 246-267. DOI: https://doi.org/10.3991/ijet.v15i21.15647

Anderson, J. E., Schwager, P. H., & Kerns, R. L. (2006). The Driver s for Acceptance of Tablet PCs by Faculty in a College of Business. Journal of Information Systems Education, 17(4), 35-47.

Asongu, S., Amari, M., Jarboui, A., & Mouakhar, K. (2021). ICT dynamics for gender inclusive intermediary education: minimum poverty and inequality thresholds in developing countries. Telecommunications Policy, 45(5), 102125. DOI: https://doi.org/10.1016/j.telpol.2021.102125

Boaventura, D., Ré, P., Fonseca, L. C., & Hawkins, S. J. (2002). Intertidal rocky shore communities of the continental Portuguese coast: Analysis of distribution patterns. Marine Ecolology, 23(1), 69-90. DOI: https://doi.org/10.1046/j.1439-0485.2002.02758.x

Bandyopadhyay, K., & Fraccastoro, K. (2007). The Effect of Culture on User Acceptance of Information Technology. Communications of the Association for Information Systems, 19. DOI: https://doi.org/10.17705/1CAIS.01923

Casa Nova, S. P. de C., & Nogueira, D. R. (2013). Technology in the Accounting Education in Brazil: A study of the adoption of Learning Management Systems (LMS) in Public Universities. In: American Accounting Association Annual Meeting and Conference on Teaching and Learning in Accounting. American Accounting Association.

Chen, C. C. (2011). Factors affecting high school teachers’ knowledge-sharing behaviors. Social Behavior and Personality: An international journal, 39(7), 993-1008. DOI: https://doi.org/10.2224/sbp.2011.39.7.993

Chin, W. W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1).

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides. Modern methods for business research. Mahwah: Lawrence Erlbaum Associates, 295-358.

Chiu, C. M., & Wang, E. T. (2008). Understanding web-based learning continuance intention: the role of subjective task. Information & Management, 45(3), 194-201. DOI: https://doi.org/10.1016/j.im.2008.02.003

Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly. DOI: https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111- 1132. DOI: https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

Fedoce, R. S., & Squirra, S. C. (2011). A Tecnologia Móvel e os Potenciais da Comunicação na Educação. LOGOS 35. Mediações Sonoras, 18(2), 35-45. DOI: https://doi.org/10.12957/logos.2011.2264

Fishbein, M., & Ajzen, I. (1975). Beliefs, attitude, intention and behavior: An introduction to theory ad research. MA: Addison-Wesley.

Gupta, B., Dasgupta, S., & Gupta, A. (2008). Adoption of ICT in a government organization in a developing country: an American study. Journal of Strategic Information Systems, 10(1), 36-47.

Hair, J., Black, Babin, Anderson, & Tatham (2009). Análise multivariada de dados (6a ed.). Porto Alegre: Bookman.

Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20(1), 277- 319. DOI: https://doi.org/10.1108/S1474-7979(2009)0000020014

Im, I., Kim, Y., Han, H-J. (2008). The effects of perceived risk and technology type on users’ acceptance of technologies. Information and Management, 45(1), 1-9. DOI: https://doi.org/10.1016/j.im.2007.03.005

Kaufmann, S. M. A. (2005). Tecnologia da Informação em uma Instituição de Ensino Superior: fatores que influenciam sua utilização. Dissertação de Mestrado em Administração, Universidade Federal do Rio Grande do Sul, 2005, 117.

Li, J. P., & Kishore, R. (2006). How robust is the UTAUT instrument?: a multigroup invariance analysis in the context of acceptance and use of online community weblog systems. ACM SIGMIS CPR. Conference on Computer Personnel Research. DOI: https://doi.org/10.1145/1125170.1125218

Lin, J. C., & Chang, H. (2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality, 21(4), 424-444. DOI: https://doi.org/10.1108/09604521111146289

Luo, W., & He, Y. (2021). Influence of sports applications on college students' exercise behaviors and habits: A thematic analysis. Alexandria Engineering Journal, 60(6), 5095-5104. DOI: https://doi.org/10.1016/j.aej.2021.03.059

Jayabalan, J., Dorasamy, M., & Raman, M. (2021). Reshaping Higher Educational Institutions through Frugal Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(2), 145. DOI: https://doi.org/10.3390/joitmc7020145

Malhotra, N. (2001). Pesquisa de marketing: uma orientação aplicada. (3a ed.). Porto Alegre: Bookman.

Mazzioni, S. (2013). As estratégias utilizadas no processo de ensino-aprendizagem: concepções de alunos e professores de ciências contábeis. Revista Eletrônica de Administração e Turismo, 2(1), 93-109.

Moreno-Guerrero, A. J., López-Belmonte, J., Marín-Marín, J. A., & Soler-Costa, R. (2020). Scientific development of educational artificial intelligence in Web of Science. Future Internet, 12(8), 124. DOI: https://doi.org/10.3390/fi12080124

Moutinho, K., & Roazzi, A. (2010). As teorias da ação racional e da ação planejada: relações entre intenções e comportamentos. Avaliação Psicológica, 9(2), 279-287.

Muñoz, C. M. D., & Gámez, M. R. (2020). The Classroom Inverted In The Teaching-Learning Process Of Natural Sciences InTimes Of COVID-19. PalArch's Journal of Archaeology of Egypt/Egyptology, 17(7), 8924-8937.

Oliveira, B. M. K. (2011). Aceitação e uso de ambiente virtual de aprendizagem no contexto de um curso de capacitação para servidores públicos. Dissertação de Mestrado em Administração, Universidade Federal do Rio Grande do Norte, 2011.

Park, J. K., Yang, S., & Lehto, X. (2007). Adoption of mobile technologies for Chinese consumers. Journal of Electronic Commerce Research, 8(3), 196-206.

Pires, P. J., & Costa Filho, B. A. (2008). Fatores do índice de prontidão à tecnologia (TRI) como elementos diferenciadores entre usuários e não usuários de internet banking e como antecedentes do modelo de aceitação de tecnologia (TAM). Revista de Administração Contemporânea (RAC), 12(2). DOI: https://doi.org/10.1590/S1415-65552008000200007

Pynoo, B., Devolder, P., Tondeur, J., Braak, J., Duyck, W., & Duyck, P. (2011). Predicting secondary school teachers’ acceptance and use of a digital learning environment: A cross sectional study. Computers in Human Behavior, 27(1), 568-575. DOI: https://doi.org/10.1016/j.chb.2010.10.005

Rezaei, A. (2020). Groupwork in Active Learning Classrooms: Recommendations for Users. Journal of Learning Spaces, 9(2), 1-21.

Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. DOI: https://doi.org/10.1016/j.techsoc.2021.101565

Ringle, C., Silva, D., & Bido, D. S. (2014). Modelagem de Equações Estruturais com utilização do Smartpls. Revista Brasileira de Marketing, 13(2), 54-71. DOI: https://doi.org/10.5585/remark.v13i2.2717

Rogers, E. M. (1995). Diffusion of Innovations. New York: The Free Press.

Saragoça, V. A. M., & Domingues, M. J. C. S. (2013). Fatores que influenciam o Uso e a Intenção de Uso das Tecnologias: um estudo em uma Universidade. Encontro da Anpad, 33.

Schmitt, D. C., Bugalho, D. K., & Kruger, S. D. (2021). Percepções docentes e às estratégias de ensino-aprendizagem durante o isolamento social motivado pelo COVID-19. Revista Catarinense da Ciência Contábil, 20, e3133. https://doi.org/10.16930/2237-766220213133 DOI: https://doi.org/10.16930/2237-7662202131331

Serna Gómez, J. H., Díaz-Piraquive, F. N., Muriel-Perea, Y. D. J., & Díaz Peláez, A. (2021). Advances, Opportunities, and Challenges in the Digital Transformation of HEIs in Latin America. In Radical Solutions for Digital Transformation in Latin American Universities (pp. 55-75). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-3941-8_4

Siqueira, N. A. (2010). Validação de instrumento para identificação de variáveis que influenciam na satisfação de usuário de sistemas de informação. Dissertação de Mestrado em Administração, Universidade Federal de Santa Maria, 2010.

Silva, L. F., Oliveira, E. D., & Bolfe, M. (2013). Mobile Learning: Aprendizagem com mobilidade. Colloquium Exactarum, 5(especial), 59-65. DOI: https://doi.org/10.5747/ce.2013.v05.nesp.000054

Santos, G., & Resende, L. M. M. de (2014). O Desafio Metodológico no uso de Novas Tecnologias: Um estudo em uma Instituição de Ensino da cidade de Itararé-SP. Revista Tecnologias na Educação, 10.

Song, Y., & Kong, S. C. (2017). Affordances and constraints of BYOD (Bring Your Own Device) for learning and teaching in higher education: Teachers' perspectives. The Internet and Higher Education, 32(1), 39-46. DOI: https://doi.org/10.1016/j.iheduc.2016.08.004

Souza, F. M. de, & Sanchez, O. P. (2013). O Impacto da Influência Social sobre a Intenção de Uso de Sites de Compras Coletivas: um estudo baseado no modelo UTAUT, com usuários do Orkut, Facebook, Twitter e Linkedin. Encontro de Administração da Informação EnADI, 3.

Tabowei, A. E. (2021). Technology Enhanced Learning: A Case Study of the Potentials of Mobile Technologies in Nigerian College of Education. Doctoral dissertation, College of Education Arit Etim Tabowei A thesis submitted in partial fulfilment of the requirement of the University of the West of England for the degree of DOCTOR OF PHILOSOPHY Faculty of Environment and Technology, University of the West of England Bristol.

Tacco, F. M. S. (2011). O impacto da influência social sobre a intenção de uso de sites de compras coletivas: um estudo baseado no modelo UTAUT. Dissertação de Mestrado em Administração, Faculdade de Administração e Economia, Universidade Metodista de São Paulo, 2011, 76.

Taylor, S., & Tood, P. (1995). Understanding information technology usage: a test of competing models. Information Systems Research, 6(2), 144-176. DOI: https://doi.org/10.1287/isre.6.2.144

Tenenhaus, M., Vinzi, V. E., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159-205. DOI: https://doi.org/10.1016/j.csda.2004.03.005

Teo, T. (2010). Development and validation of the m-learning acceptance measure (ELAM). Internet and Higher Education, 13(1), 148-162. DOI: https://doi.org/10.1016/j.iheduc.2010.02.001

Thompson, R., Higgins, C., Howell, J. (1991). Personal computing: toward a conceptual model of utilization. MIS Quarterly, Minneapolis, 15(1), 124-143. DOI: https://doi.org/10.2307/249443

Venkatesh, V., Morris, M. G, Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. DOI: https://doi.org/10.2307/30036540

Visentini, M. S., Bobsin, D., & Rech, I. (2008). Ampliando as considerações sobre o uso da Tecnologia: o estado da arte do UTAUT. Encontro Anual da Associação Nacional de Programas de Pós-Graduação em Administração, 32.

Yadav, A. K., & Oyelere, S. S. (2021). Contextualized mobile game-based learning application for computing education. Education and Information Technologies, 26(3), 2539-2562. DOI: https://doi.org/10.1007/s10639-020-10373-3

Yang, S., Hsu, Y. C., & Tan, S. (2010). Predicting the Determinants of Users’ Intentions for Using YouTube to Share Video: Moderating Gender Effects - Cyberpsychology, Behavior, and Social Networking, 13(2). DOI: https://doi.org/10.1089/cyber.2009.0105

Wang, Y-S., Wu, M-C., & Wang, H-Y. (2008). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal of Educational Technology.

Wardak, M. (2020). Mobile Assisted Language Learning (MALL): Teacher Uses of Smartphone Applications (Apps) to Support Undergraduate Students’ English as a Foreign Language (EFL) Vocabulary Development. Doctoral dissertation, Lancaster University, United Kingdom.

Wu, W. H., Wu, Y. J., Chen, C., Kao, H., Lin, C., & Huang, S. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59(2), 817-827. DOI: https://doi.org/10.1016/j.compedu.2012.03.016

Published

2021-10-29

How to Cite

Rodrigues Martins, A. S., Quintana, A. C., & Gularte Quintana, C. (2021). Factors that influence the intention of using an app in higher education. Revista Catarinense Da Ciência Contábil, 20, e3193. https://doi.org/10.16930/2237-766220213193

Issue

Section

Articles