Factors that interfere with the behavioral intention of using remote classes by Accounting Sciences Course Students of Paraná State Public institutions

Authors

DOI:

https://doi.org/10.16930/2237-766220223293

Keywords:

TAM Model, Accounting Sciences, Pandemic, Remote Classes

Abstract

The objective of this study is to verify the factors that interfere with the behavioral intention of using the classes in the remote modality by the Accounting Sciences Course Students of Paraná State Public Universities. The research was carried out through the quantitative approach and the structural equation modeling technique was used for data analysis (SEM). Technology Acceptance Model (TAM) was used as the basis, and the sample consisted of 292 respondents. The results of the study point out that the students perceived the usefulness and importance of the classes in remote modality using digital technologies, and that previous knowledge of technologies contributed positively to the ease of use perception. It was also possible to verify that the students found no difficulty accessing the classes in the environment provided by the IHE. Finally, despite all the challenges of the pandemic period and the emergency adoption of the remote classes modality, the Paraná  State IHEs managed to continue with the school activities, overcoming great difficulties at a time of great uncertainty, and that the students understand that such changes were necessary, even if they didn't happen exactly as they would like to. The findings of this research are expected to contribute positively to the formulation of crisis coping strategies by the IHEs as well as to the planning of institutional virtual platforms.

References

Aguilera-Hermida, A. P. (2020). College students’ use and acceptance of emergency on-line learning due to Covid-19. International Journal of Educational Research Open, 1, 100011. DOI: https://doi.org/10.1016/j.ijedro.2020.100011

Bao, W. (2020). COVID‐19 and on-line teaching in higher education: A case study of Peking University. Human Behavior and Emerging Technologies, 2(2), 113-115. DOI: https://doi.org/10.1002/hbe2.191

Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International journal of Research in Marketing, 13(2), 139-161. DOI: https://doi.org/10.1016/0167-8116(95)00038-0

Brei, V. A., & Liberali Neto, G. (2006). O uso da técnica de modelagem em equações estruturais na área de marketing: um estudo comparativo entre publicações no Brasil e no exterior. Revista de Administração Contemporânea, 10(4), 131-151. DOI: https://doi.org/10.1590/S1415-65552006000400007

Cohen, J. (1988). Statistical Power Analysis for the behavioral sciences (2nd ed). New York: Psychology Press.

Collings, D. (2006). Selecting a questionnaire response scale for student feedback surveys: a comparison of psychometric properties and student and staff preferences among three alternatives. Evaluation Forum 2005.

Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., ... & Lam, S. (2020). COVID-19: 20 countries' higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1), 1-20. DOI: https://doi.org/10.37074/jalt.2020.3.1.7

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. DOI: https://doi.org/10.2307/249008

DeLone, W.H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. DOI: https://doi.org/10.1287/isre.3.1.60

DeVellis, R. F. (1991). Scale Development: theory and applications (Applied Social Research Methods Series, Newbury Park. Sage.

Fagan, M. H. (2019). Factors influencing student acceptance of mobile learning in higher education. Computers in the Schools, 36(2), 105-121. DOI: https://doi.org/10.1080/07380569.2019.1603051

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. DOI: https://doi.org/10.1177/002224378101800104

Gong, M., Bay, C. W., & Kong, H. (2004). An Enhanced Technology Acceptance Model for Web-Based Learning. Journal of Information Systems, 15(4), 365-375.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman.

Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: SAGE.

Hair, J.F., Ringle, C.M. & Sarstedt, M. (2011) PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-151. doi: 10.2753/MTP1069-6679190202 DOI: https://doi.org/10.2753/MTP1069-6679190202

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319. https://doi.org/10.1108/S1474-7979(2009)0000020014 DOI: https://doi.org/10.1108/S1474-7979(2009)0000020014

Hernandez, B., Montaner, T., Sese, F. J., & Urquizu, P. (2011). The role of social motivations in e-learning: How do they affect usage and success of ICT interactive tools? Computers in human behavior, 27(6), 2224-2232. DOI: https://doi.org/10.1016/j.chb.2011.07.001

Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020). The difference between emergency remote teaching and on-line learning. Educause review, 27, 1-12.

Kemp, A., Palmer, E., & Strelan, P. (2019). A taxonomy of factors affecting attitudes towards educational technologies for use with technology acceptance models. British Journal of Educational Technology, 50(5), 2394-2413. DOI: https://doi.org/10.1111/bjet.12833

Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011). On the use of partial least squares path modeling in accounting research. International Journal of Accounting Information Systems, 12(4), 305-328. doi: 10.1016/j.accinf.2011.05.002 DOI: https://doi.org/10.1016/j.accinf.2011.05.002

Lei n.º 13.979, de 6 de fevereiro de 2020 (2020). Dispõe sobre as medidas para enfrentamento da emergência de saúde pública de importância internacional decorrente do coronavírus responsável pelo surto de 2019. Recuperado de http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/l13979.htm

Ministério da Saúde (2020). Ministério da Saúde apresenta diretrizes para auxiliar na decisão sobre distanciamento social. Recuperado de https://www.saude.gov.br/noticias/agencia-saude/46862-ministerio-da-saude-apresenta-diretrizes-para-auxiliar-na-decisao-sobre-distanciamento-social. 2020.

Mondini, V. E. D., & Domingues, M. J. C. D. S. (2018). Gestão da retenção de alunos em cursos on-line sob a perspectiva da aceitação da tecnologia. Revista Brasileira de Educação, 23. DOI: https://doi.org/10.1590/s1413-24782018230050

Nascimento, J. C. H. B., & Macedo, M. A. S. (2016). Modelagem de equações estruturais com mínimos quadrados parciais: um exemplo da aplicação do SmartPLS® em pesquisas em Contabilidade. Revista de Educação e Pesquisa em Contabilidade, 10(3), 289-313. DOI: https://doi.org/10.17524/repec.v10i3.1376

Nasu, V. H. (2020). A COVID-19 e o ensino contábil: impactos e perspectivas futuras. Revista Mineira de Contabilidade, 21(1), 4-7.

Oliveira, V. de, Tertuliano, I. W., Silva, S. A. da, & Castro, H. de O. (2021). Percepção de graduandos em Educação Física sobre as aulas remotas frente à COVID-19: Um estudo de caso. Research, Society and Development, 10(4), e3510413843. https://doi.org/10.33448/rsd-v10i4.13843 DOI: https://doi.org/10.33448/rsd-v10i4.13843

Owens, J., Hardcastle, L., & Richardson, B. (2009). Learning from a distance: The experience of remote students. Journal of Distance Education, 23(3), 53-74.

Pal, D., & Vanijja, V. (2020). Perceived usability evaluation of Microsoft Teams as an on-line learning platform during COVID-19 using system usability scale and technology acceptance model in India. Children and youth services review, 119, 105535. DOI: https://doi.org/10.1016/j.childyouth.2020.105535

Park, N., Roman, R., Lee, S., & Chung, J. E. (2009). User acceptance of a digital library system in developing countries: An application of the Technology Acceptance Model. International journal of information management, 29(3), 196-209. DOI: https://doi.org/10.1016/j.ijinfomgt.2008.07.001

Portaria n.º 343, de 17 de março de 2020 (2020). Dispõe sobre a substituição das aulas presenciais por aulas em meios digitais enquanto durar a situação de pandemia do Novo Coronavírus - COVID-19. Brasília, DF: Ministério da Educação. Recuperado de http://www.in.gov.br/en/web/dou/-/portaria-n-343-de-17-de-marco-de-2020-248564376

Rondini, C. A., Pedro, K. M., & Duarte, C.S. (2020). Pandemia do Covid-19 e o ensino remoto emergencial: Mudanças na práxis docente. Interfaces Científicas-Educação, 10(1), 41-57. DOI: https://doi.org/10.17564/2316-3828.2020v10n1p41-57

Rossoni, L. (2020). Covid-19, Organizações, Trabalho em Casa e Produção Científica. Revista Eletrônica de Ciência Administrativa, 19(2), 158-168. DOI: https://doi.org/10.21529/RECADM.2020ed2

Sanchez, G. (2013). PLS path modeling with R. Berkeley: Trowchez Editions.

Santos Junior, V. B., & da Silva Monteiro, J. C. (2020). Educação e covid-19: as tecnologias digitais mediando a aprendizagem em tempos de pandemia. Revista Encantar-Educação, Cultura e Sociedade, 2, 01-15. DOI: https://doi.org/10.46375/encantar.v2.0011

Silva, W. A. da, Mateus, S., Costa, F. A., Oliveira, J. V. de, & Truquete, M. K. (2021). Conexão e Conectividade dos Acadêmicos do Ensino Superior Público em Roraima: Desafios e necessidades para implementação das aulas remotas. Ambiente: Gestão e Desenvolvimento, 14, 46-56. https://doi.org/https://doi.org/10.24979/ambiente.v14i1.866

Sponchiato, D. (2020). Corona Vírus: Como a pandemia nasceu de uma zoonose. Recuperado de https://saude.abril.com.br/medicina/coronavirus-pandemia-zoonose/

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. DOI: https://doi.org/10.2307/30036540

World Health Organization (2020). WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19

Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232. DOI: https://doi.org/10.1016/j.chb.2016.10.028

Yakubu, M. N., & Dasuki, S. I. (2019). Factors affecting the adoption of e-learning technologies among higher education students in Nigeria: A structural equation modelling approach. Information Development, 35(3), 492-502. DOI: https://doi.org/10.1177/0266666918765907

Zayabalaradjane, Z. (2020). COVID-19: Strategies for On-line Engagement of Remote Learners. On-line Submission, 9(246), 1-11.

Published

2022-08-01

How to Cite

Goncalves, M., dos Anjos, E. A. ., & Costa, F. . (2022). Factors that interfere with the behavioral intention of using remote classes by Accounting Sciences Course Students of Paraná State Public institutions. Revista Catarinense Da Ciência Contábil, 21, e3293. https://doi.org/10.16930/2237-766220223293

Issue

Section

Articles