Credit Risk Management Through the use of Machine Learning:

The Case of Banco BS2

Authors

DOI:

https://doi.org/10.16930/2237-766220253526

Keywords:

Credit Risk Management, Default, Predictive Model, Machine Learning, AI

Abstract

Credit risk has played a central role in several global financial crises over the past three decades. An increasingly complex and interconnected financial landscape makes risk management essential for the stability and growth of financial institutions. This case study aims to analyze the use of machine learning specifically, the Gradient Boosting Decision Tree (GBDT) algorithm in a predictive model that combines significant financial and non-financial variables and incorporates credit bureau inquiries into Banco BS2’s credit risk management process. The goal is to achieve greater accuracy in decision-making and improvements in risk mitigation. The F1 metric, employed as a measure of the model’s precision, shows a superior value of 0.77 when compared with the model used by Serasa. Since 2022. the continuous monitoring capability offered by this predictive model has provided BS2 Bankwith a real-time view of the financial health of its customer base, thereby facilitating the implementation of more assertive policies. Furthermore, the default rate among Banco BS2’s corporate clients, as recorded by BCB-CADOC (2024), has been on a decline following the implementation of the new GBDT-based model. This study contributes to promoting innovation and competitiveness within financial institutions by encouraging transparency and strengthening the confidence of investors, stakeholders, and regulators such as the Central Bank through the adoption of Artificial Intelligence (AI) tools that detect credit risks early and help prevent systemic crises.

 

References

Agarwal, M., & Vandana, T.R. (2022). Exchange rate crises in Latin America, East Asia and Russia. Brazilian Journal of Political Economy, 42(2), 263-282, http://dx.doi.org/10.1590/0101-31572022-3299 DOI: https://doi.org/10.1590/0101-31572022-3299

Altman, E.I., Sabato, G., & Wilson, N. (2010). The value of non-financial information in small and medium-sized enterprise risk management. The Journal of Credit Risk, 6(2), 95-127. DOI: https://doi.org/10.21314/JCR.2010.110

Ambavat, P. P. (2021). Credit Bureaus Must Adopt AI-ML, Data Analytics for Holistic Credit Scores. CRIF Highmark. https://www.crifhighmark.com

Avelar, E. A., Leocádio, V. A., Campos, O. V., Ferreira, P. O. & Orefici, J. B. P. (2022). Algoritmo Random Forest para Previsão de Comportamento de Preços de Ativos. Revista FSA, 19(10). http://www4.unifsa.com.br/revista/index.php/fsa/article/view/2592 DOI: https://doi.org/10.12819/2022.19.10.3

Banco BS2 (2024). Somos o BS2. https://www.bancobs2.com.br/somos-o-bs2/

Banco Central do Brasil (1999). Resolução CMN n° 2.682 de 21/12/1999. https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%A3o&numero=2682

Banco Central do Brasil (2022). Resolução CMN n° 5.037 de 29/9/2022. https://www.bcb.gov.br/estabilidadefinanceira/exibenormativo?tipo=Resolu%C3%A7%C3%A3o%20CMN&numero=5037

Banco Central do Brasil (2023). BC e bureaus de crédito assinam acordo para compartilhamento de informações. https://www.bcb.gov.br/detalhenoticia/668/notici

Banco Central do Brasil (BCB-CADOC) (2024). Estatísticas monetárias e de crédito.

https://www.bcb.gov.br/estatisticas/estatisticasmonetariascredito

Bank for International Settlements (BIS) (2024, julho). Basel Committee on Bank Supervision: International Convergence of Capital Measurement and Capital Standards. https://www.bis.org/publ/bcbs238.htm

Berrar, D. (2019). Cross-Validation, Bootstrap, and ROC Analysis. Encyclopedia of Bioinformatics and Computational Biology, 542-560. https://doi.org/10.1016/B978-0-12-809633-8.20349-X DOI: https://doi.org/10.1016/B978-0-12-809633-8.20349-X

Botelho, D. ,& Tostes, F. D. (2011). Modelagem de probabilidade de churn. Revista de Administraçäo de Empresas, 4(396). DOI: https://doi.org/10.1590/S0034-75902010000400005

Calvo, G. A. (2008). Crises in Emerging Markets Economies: A Global Perspective," Central Banking, Analysis, and Economic Policies Book Series. In Kevin Cowan & Sebastián Edwards & Rodrigo O. Valdés & Norman Loayza (Series Editor) & Klaus Schmidt- (ed.), Current Account and External Financing (ed. 1, 12, chapter 3, 085-115), Central Bank of Chile.

Castro, C. L. de & Braga, A, P. (2011), Aprendizado supervisionado com conjunto de dados desbalanceados. Revista Controle & Automação, 22(5),441-466. DOI: https://doi.org/10.1590/S0103-17592011000500002

Creswell, J. W. & Poth, C. N. (2016), Qualitative inquiry and research design: choosing among five approaches. Sage.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785 DOI: https://doi.org/10.1145/2939672.2939785

Dabrowski, M. (2023). Thirty years of economic transition in the former Soviet Union: Microeconomic and institutional dimensions. Russian Journal of Economics, 9,1-32. https://doi.org/10.32609/j.ruje.9.104761 DOI: https://doi.org/10.32609/j.ruje.9.104761

Davenport, T. H., & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Harvard Business Press.

Denzin, N. (1978) The research act: a theoretical introduction to sociological methods. (2a ed). Mc Graw-Hill.

Demirgüç-Kunt, A., & Singer, D. (2017). Financial inclusion and inclusive growth: A review of recent empirical evidence. World bank policy research working paper, (8040). http://documents.worldbank.org/curated/en/403611493134249446/pdf/WPS8040.pdf

Dewasiri, N. J., Dharmarathna, D. G; Choudhary,M.,( 2024). Leveraging Artificial Intelligence for Enhanced Risk Management in Banking: A Systematic Literature Review. In Singh et al (Eds). Artificial Intelligence Enabled Management: An Emerging Economy Perspective, Chapter 13, 197-213. https://doi.org/10.1515/9783111172408013 DOI: https://doi.org/10.1515/9783111172408-013

Dumitrescu, E., Hué, S., Hurlin, C., & Tokpavi, S. (2022). Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects. European Journal of Operational Research, 297(3), 1178-1192. DOI: https://doi.org/10.1016/j.ejor.2021.06.053

Flick, U. (2004). Introdução à pesquisa qualitativa. Bookman.

Fosu, S., Boapeah, H. A. & Ciftci, N. (2023). Credit information sharing and cost of debt: Evidence from the introduction of credit bureaus in developing countries. Financial Review, 58(4), 653-930. DOI: https://doi.org/10.1111/fire.12361

Freeman, R. E., & Dmytriyev, S. D. (2017). Corporate social responsibility and stakeholder theory: Learning from each other. Symphonya. Emerging Issues in Management, (1), 7-15. https://symphonya.unicusano.it/index.php/symphonya/article/view/2017.1.02freeman.dmytriyev DOI: https://doi.org/10.4468/2017.1.02freeman.dmytriyev

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451 DOI: https://doi.org/10.1214/aos/1013203451

Gil, A. C. (2009). Estudo de Caso. Editora Atlas.

Godoy, A. S. (2006). Estudo de caso qualitativo. In C. K. Godoi, R. Bandeira-de-Mello, & A. B. Silva. Pesquisa qualitativa em estudos organizacionais: paradigmas, estratégias e métodos. Saraiva.

Godoi, C. K., Bandeira-De-Melo, R., & Silva, A. B. (Orgs.). (2010). Pesquisa qualitativa em estudos organizacionais: paradigmas, estratégias e métodos (2a ed.). Saraiva.

Grunert, J., Norden, L., & Weber, M. (2005). The role of non-financial factors in internal credit ratings. Journal of banking & finance, 29(2), 509-531. DOI: https://doi.org/10.1016/j.jbankfin.2004.05.017

Hand, D. J., & Henley, W. E. (1997). Statistical classification methods in consumer credit scoring: a review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 160(3), 523-541. DOI: https://doi.org/10.1111/j.1467-985X.1997.00078.x

Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, Perspectives, and Prospects. Science, 349(6245). https://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf DOI: https://doi.org/10.1126/science.aaa8415

Khandani, A. E., Kim, A. J., & Lo, A. W. (2010). Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767-2787. DOI: https://doi.org/10.1016/j.jbankfin.2010.06.001

Khemakhem, S., & Boujelbene, Y. (2018). Predicting credit risk on the basis of financial and non-financial variables and data mining. Review of accounting and finance, 17(3), 316-340. DOI: https://doi.org/10.1108/RAF-07-2017-0143

Lassance, L. C. B. K., & Ternoski, S. (2021). Score ia cresol: Utilizando inteligência artificial para estimar viabilidade de crédito. Revista Aproximação, 3(06). https://revistas.unicentro.br/index.php/aproximacao/article/view/6923

Lee, I., & Shin, Y. J., (2020). Machine learning for enterprises: Applications, algorithm selection, and challenges. Business Horizons, 63, 150-170. https://doi.org/10.1016/j.bushor.2019.10.005 DOI: https://doi.org/10.1016/j.bushor.2019.10.005

Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1), 29. DOI: https://doi.org/10.3390/risks7010029

Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: A ten-year update. European Journal of Operational Research, 247(1), 124-136. https://www.sciencedirect.com/science/article/pii/S0377221715007692 DOI: https://doi.org/10.1016/j.ejor.2015.05.030

Louzada, F., Ara, A, Fernandes, G. B. (2016), Classification methods applied to credit scoring: Systematic review and overall comparison, Surveys in Operations Research and Management Science, 21, 117-134. http://dx.doi.org/10.1016/j.sorms.2016.10.001 DOI: https://doi.org/10.1016/j.sorms.2016.10.001

Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216-231. https://doi.org/10.1016/j.patcog.2019.02.023 DOI: https://doi.org/10.1016/j.patcog.2019.02.023

Marini, J. M. & Manfrim, L. F. (2020). Metodologia de análise de crédito aplicada na redução do risco de inadimplência. REGRAD - Revista Eletrônica de Graduação do UNIVEM, 13(1), 76-91. https://revista.univem.edu.br/REGRAD/article/view/3105

Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine learning for financial risk management: a survey. Ieee Access, 8, 203203-203223. DOI: https://doi.org/10.1109/ACCESS.2020.3036322

Mendonça, A. R. R. D., & Deos, S. (2020). Regulação bancária: uma análise de sua dinâmica por ocasião dos dez anos da crise financeira global. Revista de Economia Contemporânea, 24, e202427. https://doi.org/10.1590/198055272427 DOI: https://doi.org/10.1590/198055272427

Mian, A., & Sufi, A. (2009). The Consequences of Mortgage Credit Expansion: Evidence from the U.S. Mortgage Default Crisis. The Quarterly Journal of Economics, 124(4), 1449-1496. https://doi.org/10.1162/qjec.2009.124.4.1449 DOI: https://doi.org/10.1162/qjec.2009.124.4.1449

Modigliani, F., & Brumberg, R. (1954). Utility analysis and the consumption function: An interpretation of cross-section data. In K. K. Kurihara (Ed.). Post-Keynesian Economics. Rutgers University Press.

Montevechi, A. A., Carvalho Miranda, R., Medeiros, A. L., & Montevechi, J. A. B. (2024). Advancing credit risk modelling with Machine Learning: A comprehensive review of the state-of-the-art. Engineering Applications of Artificial Intelligence, 137, 109082. https://doi.org/10.1016/j.engappai.2024.109082 DOI: https://doi.org/10.1016/j.engappai.2024.109082

Moodys Local (2024). Relatório do Emissor: Banco BS2 S.A. 2024-05-13. https://moodyslocal.com.br/reporte/issuer-report/relatorio-do-emissor-banco-bs2-s-a/

Oliveira, R., & Santos, P. (2022). Avaliação de scores de crédito e práticas de bureau no Brasil. Journal of Credit Analysis, 28(3), 123-138. http://doi.org/10.1000/j.joca.2022.03.014

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Books.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830. https://www.researchgate.net/publication/51969319_Scikit-learn_Machine_Learning_in_Python

Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine learning, 42, 203-231. https://doi.org/10.1023/A:1007601015854 DOI: https://doi.org/10.1023/A:1007601015854

Rahman, M., Ming, T. H., Baigh, T. A., & Sarker, M. (2021). Adoption of artificial intelligence in banking services: an empirical analysis. International Journal of Emerging Markets, 18(10), 4270-4300. https://doi.org/10.1108/IJOEM-06-2020-0724 DOI: https://doi.org/10.1108/IJOEM-06-2020-0724

Rahmani, A. M., Rezazadeh, B., Haghparast, M., Chang, W. C., & Ting, S. G. (2023). Applications of artificial intelligence in the economy, including applications in stock trading, market analysis, and risk management. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2023.3300036

Reinhart, C. M., & Rogoff, K. S. (2020). This time is different: A panoramic view of eight centuries of financial crises. Journal of Economic Perspectives, 34(3), 3-24.

https://www.aeaweb.org/articles?id=10.1257/jep.34.3.3

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). https://doi.org/10.1145/2939672.2939778 DOI: https://doi.org/10.1145/2939672.2939778

Rizvi, S. A. R., Arshad, S., & Alam, N. (2015). Crises and contagion in Asia Pacific—Islamic v/s conventional markets. Pacific-Basin Finance Journal, 34, 315-326. https://doi.org/10.1016/j.pacfin.2015.04.002 DOI: https://doi.org/10.1016/j.pacfin.2015.04.002

Serasa Experian. (2023). Importância do Bureau de crédito para análise de crédito. https://www.serasaexperian.com.br/conteudos/credito/bureau-de-credito-conceito-e-importancia-na-analise-de-credito/

Sfeir, E. (2023). Inovação aplicada ao mercado de crédito e ao setor de birôs. https://anbc.org.br/inovacao-aplicada-ao-mercado-de-credito-e-ao-setor-de-biros/

Stake, R. E. (1995). The art of case study research. Sage Publications.

Stake, R. E. (2000). Case studies. In N. K. Denzin, & Y. S. Lincoln, Y. S. Handbook of qualitative research, (2ª ed.), 435-454, Thousand Oaks.

Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern recognition, 40(12), 3358-3378. DOI: https://doi.org/10.1016/j.patcog.2007.04.009

Timotio, J. G. M., Vieira, V. E. L., Oliveira, R. A. de, & Silva, R. C. F. e. (2024). Inteligência Artificial no campo de finanças. Revista de Gestão e Secretariado, 15(6), e3935. https://doi.org/10.7769/gesec.v15i6.3935 DOI: https://doi.org/10.7769/gesec.v15i6.3935

Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a right to explanation of automated decision-making does not exist in the general data protection regulation. International data privacy law, 7(2), 76-99. https://doi.org/10.1093/idpl/ipx005 DOI: https://doi.org/10.1093/idpl/ipx005

Wanzeller, W. F., Alves, C. M. O., & Cota, M. P. (2023). Sistema de apoio à decisão integrando cadastro negativo, scoring, análise qualitativa de crédito com inteligência artificial e criação de contratos: Protocolo para revisão de escopo. Research, Society and Development, 12(7), e18012742680. https://doi.org/10.33448/rsd-v12i7.42680 DOI: https://doi.org/10.33448/rsd-v12i7.42680

Zhang, T., Zhang, W., Wei, X. U., & Haijing, H. A. O. (2018). Multiple instance learning for credit risk assessment with transaction data. Knowledge-Based Systems, 161, 65-77. http://dx.doi.org/10.1016/j.knosys.2018.07.030 DOI: https://doi.org/10.1016/j.knosys.2018.07.030

Zhang, L., & Song, Q. (2022). Credit Evaluation of SMEs Based on GBDT-CNN-LR Hybrid Integrated Model. Wireless Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/5251228 DOI: https://doi.org/10.1155/2022/5251228

Zhou, J., Li, W., Wang, J., Ding, S., & Xia, C. (2019). Default prediction in P2P lending from high-dimensional data based on machine learning. Physica A: Statistical Mechanics and its Applications, 534, 122370. https://doi.org/10.1016/j.physa.2019.122370 DOI: https://doi.org/10.1016/j.physa.2019.122370

Zöller, M. A., & Huber, M. F. (2021). Benchmark and survey of automated machine learning frameworks. Journal of artificial intelligence research, 70, 409-472. https://arxiv.org/pdf/1904.12054 DOI: https://doi.org/10.1613/jair.1.11854

Yazan, B. (2016). Três abordagens do método de estudo de caso em educação: Yin, Merriam e Stake. Meta: Avaliação, 8(22), 149-182. http://dx.doi.org/10.22347/2175-2753v8i22.1038 DOI: https://doi.org/10.22347/2175-2753v8i22.1038

Yin, R. K. (2009). Case Study Research: Design and Methods (4a ed.). Sage.

Published

2025-02-18

How to Cite

Assis, A. G. de, & Decoster, S. R. A. (2025). Credit Risk Management Through the use of Machine Learning: : The Case of Banco BS2. Revista Catarinense Da Ciência Contábil, 24, e3526. https://doi.org/10.16930/2237-766220253526

Issue

Section

Articles